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Note 

The Algorithm for Three- Dimensional Voronoi Polyhedra 

1. INTRODUCTION 

The Voronoi polyhedra [l-3] are useful tools for studies on geometrical proper- 
ties of systems of disordered centers. Such systems are interesting for various 
domains of science: physics [4-61, materials science and engineering [7], geology, 
biology [8]. The wide use of the Voronoi polyhedra (VP) derives from the fact that 
they give a natural description of the local surroundings for every center of the 
system. The VP for a given center is defined as the volume of space containing all 
points closer to this center than to any other center. In three-dimensional space a 
VP is a convex polyhedron formed by certain planes drawn perpendicularly to the 
intercenter vectors at their midpoints. The neighbouring centers making the VP 
faces are geometrical neighbours of the given center. 

The first stage in studying systems of disordered centers is the VP construction 
(obtaining the Voronoi of Delaunay tessellations). The next stage is studies of 
characteristics for the constructions obtained. It is obvious that the final aims of 
investigations determine the choice of the algorithm for computing a VP. At present 
different algorithms are available for computing both a single VP and Voronoi 
tessellations. 

The algorithms proposed by mathematicians [g-11] are of interest: they are 
recursive, i.e., a tesselated system of centers (here the Delaunay tessellation) is sup- 
plied with (deprived of) a new center and the tesselation is recomputed. This 
approach is especially convenient in the cases when the overall number of centers 
may be unknown beforehand. The algorithms proposed by Bowyer and Watson 
[lo, 211 are universal for spaces of various dimensions (d= 2: 3, 4). However, the 
most efficient algorithm for a space of a given dimension is to be that developed for 
this very dimension. For instance, the algorithm by Green and Sibson 191 
specialized for cl= 2 proves to be five times as efficient as the universal one by 
Bowyer for d=2 [lo]. 

The algorithms developed by physicists are for computing individual VPs since 
usually they are aimed at finding the distribution functions for some metric and 
topological characteristics of VPs. One of the first and simplest algorithms was 
developed by Finney [ 121. First, for a given atom i (from now on the term ‘“atom” 
will be used instead of “center”) a subset of N, neighbouring atoms is selected. Then 
the circumcenters are found for all possible assemblies of four atoms. one being the 
!’ atom. the others from the subset N,. The circumcenters closer to i than to any 
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other atoms give the VP vertices. This algorithm is especially applicable for 
homogeneous close packings where a small N, (about 20) suffices to determine a 
VP reliably. In this case, the time of computing a single VP increases as N,‘. 

Brostow, Dussault, and Fox [13] have proposed a somewhat more elaborate 
algorithm with N,-independent efficiency. For a given atom i one finds first its 
“direct” neighbours which are used then to construct a “direct” polyhedron, i.e., one 
whose faces include the midpoints of the vectors between the atom i and its 
neighbours. Thereafter, the atoms in the sphere with the radius equal to double 
separation between the i atom and the farthest vertex of the “direct” polyhedron are 
used to construct the true VP. 

“Direct” polyhedrons are employed by Brostow solely as intermediates in com- 
puting VPs. However, we have shown [ 14, 151 such polyhedra (termed by us “sim- 
plified” polyhedra) to be of interest for describing local surroundings in disordered 
systems. Topological variety of the simplified VPs are less noticeable than of the 
true VPs, and the difference, e.g., between a perturbed crystal and a liquid is more 
perceptible in statistics of simplified VPs. 

Recently Tanemura, Ogawa, and Ogita [16] have published a new algorithm 
which computes first a dual (polar) [17] polyhedron consisting of a set of 
Delaunay tetrahedrons (DT) with the common vertex at an atom i This dual 
polyhedron is then employed to compute the VP. The first step is to compute the 
initial DT. As proved, it is formed by the atoms i, i,, i,, i,, where i, is closest to the 
central i; i2 is determined from the condition of the minimum circumradius for i, i,, 
i2; i3 is determined from the condition of the minimum circumradius for i, i,, i,, i,. 
At the second step new DTs are attached in succession to the faces of the DT 
obtained (i.e., one finds a new atom i, so that the circumcenter for the atom ib and 
three atoms of a given face are at a minimum distance from this face) until all the 
DTs around the atom i become determined. The time of computing a single VP 
increases as N,. 

Our algorithm, as well as one by Tanemura et al [16], produces at first the 
initial construction and then computes successively a complete polyhedron. 
However, both algorithms realize quite different geometrical ideas. We begin with 
finding the VP faces and simultaneously build its edges and vertices. 

2. THE ALGORITHM 

Let us consider constructing the VP around a given atom i. First, it is necessary 
to select the regular set S of the closest N, neighbours. The number N, must be so 
that all the atoms capable of forming a face belong to the set S. The geometrical 
assumptions used in our algorithm follow from a simple theorem. 

THEOREM. Let (P} be the set of planes constructed to find a certain C’oronoi 
polllhedron (VP). Let a point x be known to belong to this VP. Then, the,foot of the 
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perpendicular from x to the nearest plane amorzg the (P) belongs, together n-ith Its 
neighbourhood, to a face of the VP. 

ProoJ: Let the plane A E (P> be the plane nearest to the point X. Let the point 
xi be the foot of the perpendicular from x to A. The point 3cr, with its 
neighbourhood, does not belong to a face of the VP only if there exists a plane 
BE .(I’} cutting off the point x1 from x (this follows from the VP convexity). In this 
case the points x and .~r lie on opposite sides of the plane B. The XX, distance is 
then longer than the separation from .Y to the plane B (q distance in Fig. I) 
However, such a plane does not exist, as the plane A is the nearest one to the point 
.Y by the conditions of the theorem and the xx1 distance is minimum for all the 
planes of the {PI. As a result, the point .)cr together with its neighbourhood must 
belong to the face VP. The theorem is thus proved. The above reasoning is 
obviously valid in a space of any dimension (d 3 1). 

The commonly used statement that a nearest plane forms a VP face is a trivial 
corollary of this theorem. Below we employ an atom i as point k at step 1, point X, 
at step 2 and point X, at step 3. 

2.1. Fitzding the Initial I~lformation 

Step 1. Find a point X, which is the midpoint of the vector between the atom i 
and the nearest atom i,. By our theorem, the point X, belongs to the face iI of the 
VP being computed. 

Step 2. Try all the atoms j E S ( j # i, j and find an atom j = i, so that the plane 
i2 intersecting the plane i, gives the line (il, i2) nearest to the point X,. Find a point 
Xz which is the foot of the perpendicular from the point XI to this line (see Fig. 2). 

Step 3. Try all the atoms Jo S ( j# i,, i2) and find an atom ,j = i, so that the 
plane i, intersects the line (ii, i2) at a point nearest to X,. This is the first vertex of 
the VP (ir, i?, i;). 

So we have obtained the initial information: the plane giving a face with two 
intersecting lines which give edges, and a vertex on this face. Starting from this 
information, one can readily construct the whole VP. 

FIG. 1. A two-dimensional illustration of the proof of the theorem. The plane (line) .4 E {P) (see 
text) is nearest to the point X belonging to the VP. XX, is the perpendicular from the X to the ;i. The 
plane 5 might cut off the point X, from the VP. XY is the perpendicular from .I’ to B. XY < XX, always. 
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FIG. 2. Illustration of constructing the Voronoi polyhedron: i, represents a plane nearest to the 
atom i; the point S, is the foot of the perpendicular from the atom i to the plane i,. The atom i is not 
shown. i2 is a plane which intersects the plane i, along a line nearest to X, ; A’! is the foot of the perpen- 
dicular from A’, to this line. i, is a plane intersection the obtained line at a point nearest of A’,. (i,, i,, i3) 

is the first vertex of the polyhedron. Starting w-ith this information one can compute the whole Voronoi 
polyhedron (see the text). 

2.2. Closing the Faces: The Basic Idea 

To determine the whole face il one is to find all the contiguous faces (planes giv- 
ing the edges and vertices at this plane). To this end try all jg S (j# il, i,, ix) and 
find an atom j= i, so that the plane i, intersects the line (i,, i3) at a point nearest 
to the vertex (i,, i,, i3) on that side from the plane i, which includes the atom i. If 
the VP is primitive [2] (no degenerate vertices) this plane is the only one. It gives a 
face of the VP while the intersection point is a new vertex (i,, i3, i4). Then try all 
atoms YES (j#i,, i4) and find an atom j=i5, so that the i, intersects the line 
(i, , id) at a point nearest to the vertex (i, , i,, id). It gives the face i, and the new 
vertex (i,, i,, ij). In an analogous way find the next plane and next vertex, etc. The 
procedure is over when we meet the plane i2 determining the last vertex on the face 
i,, e.g., the vertex (il, i,, iz) in Fig. 2. 

Thus, the face i, is fully determined. The rest of the faces are constructed in a 
similar way, since we have the initial information necessary for the above procedure 
for every plane which is contiguous with the face i,. For instance, for the plane il 
we know two crossing lines formed by the planes i, and i, affording the vertex 
(i2il is) = (il izi3) and the edges on the f&e i,. In fact we have even excess infor- 
mation: on this very plane i2 we know also the vertex (i z, i, , i6) with the contiguous 
plane i,. 
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When going around the known planes, we determine faces and find new planes 
forming the VP facts. Having exhausted all the planes determined, we obtain the 
required VP. As a result of the above proccdurc, WC know the numbers of all faces 
(atoms affording the VP faces), the order of numbers of continuous faces for every 
face, the incidence of vertices and faces, and the coordinates of the VP vertices. This 
information suff~ccs to compute readily any topological and metric characteristic as 
well as DT and VP tessclations. 

2.3. Details vf ihc Algorithm 

In the above procedure some of a VP vertices are computed thrice (once for 
every face). However, them is no need for unnecesary computations. For instance, 
let us go around the face i4 starting from the vertex (i,: i,, i4) (see Fig. 1). Prior to 
trying all the plants in order to find .j= i,, where i, gives the vertex (i4, iz, i,), it is 
necessary to make sure whether the face i, has already been constructed. If so1 the 
vertex (i3, i,, i7) = (id, i,, i,) and the plane i, have already been obtained too. 
Therefore, it is possible to use this vertex and the face i, without trying atoms from 
the set S. 

3. DEGENERACY 

The present algorithm is to calculate primitive VPs, i.e., those with three faces 
converging at every vertex [2]. The author has a variant of the program for a 
degenerate case. It is necessary to assume that the vertex obtained may be formed 
by several planes, and we must go around all of them. However, as shown by 
experience in computing, the probability of finding a degenerate VP for disordered 
systems is practically zero. Hence the use of the algorithms, which are specially 
developed for the nondegenerate case and are more efficient and simpler than 
universal ones. is justified for most of problems. 

4. EFFICIENCY OF THE ALGORITHM 

The efliciency of the main step in our algorithm is O(vN,), where v is the number 
of a VP vertices, i.e.. for every VP vertex one has to try atoms from the set S. 
Similarly, the efficiency of Tanemura’s algorithm is O(tN,), where t is the number of 
tetrahedrons forming a dual polyhedron. In this sense, both algorithms are of the 
same efficiency, since ti = t. The weak dependence of the efficiency on :V,, results 
from that both algorithms employ geometrical assumptions which are not obvious. 
Our procedure is based on our theorem (Sect. 2) Tanemura et u/. [ 163 make use of 
four other theorems. 
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The above estimates of the algorithm efficiencies are rather rough. The CPU time 
of a VP depends essentially on proportionality factors which can hardly be 
estimated a priori. Moreover, these can differ by several times depending on the 
way of writing the program for a computer of a given type. 

The CPU times per polyhedron on the same computer were compared [16] for 
the algorithms from Refs. [12, 13, 161. The algorithm by Tanemura et al. was 
stated [ 161 to be more efficient than those by Finney [ 121 and Brostow et al. [ 131. 

Another important characteristic of the algorithm is its simplicity and shortness. 
On this respect, for example, the Finney algorithm is rather good, although its 
efficiency is N:-dependent. 

Our algorithm is based on single general theorem. This makes it possible to 
realize the algorithm in a compact form. Our algorithm is implemented as two sub- 
routines. The first one selects a regular set S around a given atom taking into 
account periodic boundary conditions. It requires some 100 FORTRAN statements. 
The subroutine computing a VP requires 250 FORTRAN statements, about 100 of 
them being a unit for computing the initial information. About 10 % of the 
statements are comments. Detailed information on the algorithm and the program 
is available on private request. 
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